解答例1
#coding:utf-8 import math, fractions t = [] for i in range(int(math.sqrt(10000)), 1, -1): t.append(i**2) dic = {} for r in range(2, 10000 + 1): u = [str(r)] if r in t: dic.update(dict.fromkeys(u, [int(math.sqrt(r)), 1])) else: x = 1 for w in t: if r % w == 0: r /= w x *= (int(math.sqrt(w))) if x > 1: dic.update(dict.fromkeys(u, [int(x), r])) else: dic.update(dict.fromkeys(u, [1, r])) for a in range(1, 101): for b in range(2, 101): c = a * b z = dic[str(c)] if z[0] == 1: print "√" + str(a) + "/" + "√" + str(b) + " -> " + "√" + str(z[1]) + "/" + str(b) elif z[1] == 1: print "√" + str(a) + "/" + "√" + str(b) + " -> " + str(fractions.Fraction(z[0], b)) else: if fractions.Fraction(z[0], b) == 1: print "√" + str(a) + "/" + "√" + str(b) + " -> " + "√" + str(z[1]) else: print "√" + str(a) + "/" + "√" + str(b) + " -> " + "(" + str((fractions.Fraction(z[0], b))) + ")" + "*" + "√" + str(z[1])
解答例2
# -*- coding: utf-8 -*- from fractions import gcd from collections import defaultdict N = 100 # √nの有理化 # 答え: x√y def f1(n): p = n d = 2 dic = defaultdict(int) while d * d <= p: while p % d == 0: dic[d] += 1 p /= d d += 1 if p > 1: dic[p] += 1 y = n for k, v in dic.items(): while v >= 2: y /= (k * k) v -= 2 x = int( (n/y) ** .5 ) return x, y dictionary = {} def f2(n): if not n in dictionary: dictionary[n] = f1(n) return dictionary[n] for a in xrange(1, N+1): for b in xrange(2, N+1): # √a xa√ya # --- = ---------- # √b xb√yb xa, ya = f2(a) xb, yb = f2(b) if yb > 1: ya *= yb xb *= yb # yb = 1 #になる xxa, yya = f2(ya) xa *= xxa ya = yya g = gcd(xa, xb) xa /= g xb /= g left = '√{0}/√{1} -> '.format(a, b) # 分母が1 if xb == 1: if ya == 1: print(left + '{0}'.format(xa)) elif xa == 1: print(left + '√{0}'.format(ya)) else: print(left + '{0}√{1}'.format(xa, ya)) # 分母がある else: if ya == 1: print(left + '{0}/{1}'.format(xa, xb)) elif xa == 1: print(left + '√{0}/{1}'.format(ya, xb)) else: print(left + '{0}√{1}/{2}'.format(xa, ya, xb))