アルゴリズムとデータ構造

この頁何もねぇwwなめてんだろwww
と思った奴は何か書いてくれ

アルゴリズム

探索

線形探索

二分探索

ハッシュ表探索

整列

ボゴソート

世間にはあまり知られておらず、専門書にもまず載っていないが、
他のソートアルゴリズムに比べ極めて分かり易いアルゴリズムであり、
訓練をすれば猿はおろか犬でも習得できる。

バブルソート

初心者の坊や達を優しくソートの世界に導いてくれる方。
とても素直だけど、遅いので実戦の場に出ず教育者として活躍しています。

例:C言語

void bubble_sort(int *array, unsigned int size){
    int i, j, t;
    for(i = 0; i < size; i++){
        for(j = size - 1; j > i; j--){
            if (array[j] < array[j - 1]){
                t = array[j];
                array[j] = array[j - 1];
                array[j - 1] = t;
            }
        }
    }
}

隣り合ってる要素を比べて、並べたい順番になってなかったら入れ替える、という操作を繰り返すわけです。
要素が正しい位置に泡のように登っていくのでバブルソートと名付けられました。
単純ですが無駄な比較が多く、遅いです。

シェーカーソート

バブルソートの親戚。
挟みこむような動きで少しだけ無駄を減らす事に成功しました。

バブルソートで走査中、最後に入れ替えがあった位置よりも後ろは、綺麗に並んでる事がわかります。
つまり、最後に入れ替えがあった位置を記録し、次からはそれ以降を無視すれば少し無駄が少なくなるわけです。
そこで更に、前方後方と交互に走査すれば、両方から範囲を狭める事が出来るので少しだけ効率が良くなるのです。

コムソート

バブルソートの親戚。
色々な大きさの櫛を駆使します。

隣同士ではなく、まず適当に大きな間隔を開けて比較・交換をします。
どんどん間隔を小さくしていきつつ走査を繰り返し、最後は間隔が無くなり、隣同士を交換するようになりますが、それで整列完了です。
ずっと細かく見ていくよりも、最初は大雑把にやった方が効率が良いらしいです。
飛び飛びに揃えていくのが櫛(コム)のように見えるからこの名前がつきました。

挿入ソート

手当たり次第に突っ込む単純な子ですが、状況次第ではなかなかの速さ。
大変に開放的な性格です。

例:C言語

void insertion_sort(int *array, unsigned int size){
	for (i = 1; i <size ; i++) {
		for (j = i; j > 0 && array[j-1] > array[j] ; j--)
		{swap(data[j-1] , data[j]); }	//要素の交換
	}

前から順に見ていき、要素を正しい位置に挿入していきます。
この「挿入」の操作そのものは、バブルソートと同じような要領です。離れた位置に挿入する程、比較や交換の回数が多くなります。
動きとしては、配列の前部に 整列したデータがどんどん溜まっていくような感じです。
ほとんど整列済みのデータなら離れた所まで挿入する事が少なくなるので、かなり高速になります。

シェルソート

挿入ソートの親戚。
やはり突っ込むばかりだけれど、少しずつ間隔を開けたりする賢さがあります。
別に貝殻が好きというわけではなく、Shellさんが開発しただけだったりする。

挿入ソートとシェルソートの関係は、バブルソートとコムソートのようなもので
「最初は大雑把にやって、最後だけ細かく仕上げた方が効率が良い」という事を利用しています。
具体的には、ある程度の間隔を開けて挿入ソートを行い、どんどん間隔を狭くしていくのです。

クイックソート

最速の名をほしいままにしているが、たまにさぼっちゃう気まぐれ屋さん
スレンダーな子です

マージソート

いつも手を抜くことなく、速さを常に追求する努力家
クイックソートには負け越しているのをくやしがっている
他の子より大きいのが悩み

まず、配列を真っ二つに分けます。 分かれて出来た2つの配列を、更にそれぞれ真っ二つにします。
これを繰り返し、完全にバラバラになってしまうまで分割してしまいます。
分割が終わったら、今度はそれをマージ(合併)します。 この時、上手く順番に並ぶようにマージします。
マージして出来た配列を更にマージしていって、最後にたった1つの配列になった時、ソートが完了しています。
綺麗に並んだ配列2つをマージする時は、それぞれの配列の「端だけ」比較すればいいので比較回数が少なくて済むのがポイント。
(1,4,5)と(2,3,6)なら、まず左端の1と2だけを、次は4と2だけを……という風になるわけです。
マージを行うために余分なメモリ領域が必要な事と、平均するとクイックソートより僅かに遅いのが難点。

バケットソート

他にもビンソートとか色々あだ名がある。
趣味で大量にバケツを集めすぎて家を崩壊させてしまうような性格のせいで
秘めたポテンシャルを発揮出来ずにいる。

分布数えソート

バケットソートの親戚。
一応バケットソートよりはマシなものの、やはり家が崩壊しがち。

基数ソート

バケットソートの親戚。 極限られた状況でのみ他を圧倒する速さを出す可能性を秘めている
しかし、あまり活躍の機会がないのでたまに忘れ去られてたりする

データ構造

参考リンク


トップ   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS