物理は自然科学でも特に古い歴史があります。
化学は、古代の四元素説から中世の錬金術そしてフロギストン説を近代まで引きずる中で、アボガドロにより原子の概念が正しく与えられ、長岡・ラザフォードそしてボーアにより量子力学につながる原子模型の定義がなされ、近代に於いてのみ現在の化学が認められます。また生物はフック(フックの法則の人)により細胞壁が発見された頃や、古くからの農耕技術の獲得の系譜に、近代生物を見出すことができます。
ところが一方の物理は古くはアルキメデスの原理然りで、可成り昔から理解されていました。古代ギリシアでの物理とは力学の範囲になりますが、これが古くから在るということは、普段一般に目にし易い現象であり、理解しやすい(または近似的値を得易い)現象であるということです。もちろん天動説なんてものもありますが、古来は地動説があったらしいので、とくにそれが物理の興隆を近代にのみ求める理由とはならないでしょう。
尚ここでは高校物理の範囲を中心に物理学を解説します。始めはVIP的物理講座(初級編)をみればいいかも知れませんよ。
高校物理では凡そ頁の三分の一を占める。何よりも重要である。
1687年にニュートンによって画期的な理論が示された。『Philosophiae naturalis principia mathematica プリンキピア(自然哲学の数学的諸原理)』という著作で、自然現象を数学で定義できることが発表された。彼の題の通り。
ニュートンは微分積分学の功労者その一人であり、ニュートンの考えを導入した力学は、彼を讃えてニュートン力学と呼んだ。
数学では原点の如きが与えられる事が多いが、自然科学では自分で決めねばならない。鉛直投げ上げの単純な問題も、どこを高さ0にするかで計算式を変えなくてはならない。これは下記の積分定数を除去する場面の流れに似ている。
あるビルの上でボールを投げた時、ボールの座標はどこを起点にして決めるべきなのか。ボールにかかる力は何と何を考えなくてはならないのか。ビルは地球にある、そうあれば地球の中心を起点にすればよいのか、地球は太陽系にある、ならば太陽にすべきなのか、それとも銀河、いや宇宙の中心を起点にするべきなのか。どれを無視して、どれが無視できないのか。そこを見極めなければならない。尚、鉛直投げ上げ程度では重力加速度以外の天体の運動とかは充分に無視できるよ(弾道学とかは違うらしいけどね)。
物体の運動は微分・積分法に依り定義できる。時刻tでの運動を考えよう。ある時刻t0と時刻t1の差がt1-t0=ΔtとしてΔtが0に近似する時、その一定時間の変化量は平均値に等しくなる(ここが分からない場合は微分法を見直して欲しい)。
ある座標系での時刻tに於ける物体の座標を表すベクトルを&mimetex(\vec{p});とする。速度はある一定時間の座標の変化量の平均であるので、ベクトルpを時刻tで微分した物であり、&mimetex(\vec{v});とする。加速度はある一定時間の速度の変化量の平均であるので、ベクトルvを時刻tで微分した物であり、&mimetex(\vec{a});とする。
&mimetex(\vec{v}=\frac{d}{dt}\vec{p}); &mimetex(\vec{a}=\frac{d}{dt}\vec{v});
逆に時刻 &mimetex(a \le t \le b); での加速度や速度だけが分かってる時、時刻tでの座標などは上の式を積分すればよいだけなので次の様に出来る。
&mimetex(\vec{v}=\int \vec{a}\, dt); &mimetex(\vec{p}=\int \vec{v}\, dt);
不定積分での積分定数は t=a の時など既知の値を導入すれば払うことができる(ここが重要)。これを特殊化すると等加速度運動の公式が得られる。等加速度運動では不定積分の積分定数を初速などにするか、積分区間0からtで積分して初速を足すなどする。
なおベクトルpが通過した延べの距離L(道程)は次の様に定められる。
&mimetex(L=\int_{a}^{b} |\vec{v}|\, dt);
速度のベクトルvの大きさを時刻tで積分すると通過した道程となる(詳しくは註を見よ)。単純に現在の座標を求める場合には速度を積分し、移動した距離を求めるにはベクトルの大きさを積分する必要がある。
上記の事から、円運動であれサイクロイドであれ、移動した距離及び速さ、速度、これを微分・積分するだけで求めることができる。円運動を考えるその前に少し加速度と速度の意味を考える。
数学では速度たるは「座標の一次導函数はその接線の傾きを表す(座標の増減)」であるが、これは速度の方向を表す。また加速度たるは「座標の二次導函数はその凹凸を表す(増減量の増減)」が、これは加速度の方向を表す。どれも運動に於いては力の移行を表し、特に加速度は運動する物体に加わってる力であり(運動参照)、加速度の方向は力を加えた方向そのものとなる。
円運動は数学から明らかなように座標は三角函数で定義できる。偏角θ(θはラジアンとする)動径rで動点pベクトルを定義すると、&mimetex(\vec{p}=(r\cos\theta,r\sin\theta));とできる。時刻tでの偏角θを&mimetex(\theta=\omega t);と置く。ωがここでの便宜上の速度であり、これを角速度と言う。これを微分すると、次の速度たるベクトルv、加速度たるベクトルaを得る。
&mimetex(\vec{p}=(r\cos\omega t,r\sin\omega t)); &mimetex(\vec{v}=(-r\omega \sin\omega t,r \omega \cos\omega t)); &mimetex(\vec{a}=(-r\omega^2 \cos\omega t,-r\omega^2 \sin\omega t));
このベクトル成分から円運動では必ず&mimetex(\vec{p}= -\frac{1}{\omega^2}\vec{a});が成立し、この力関係は加速度が恆に円の中心を向いて居ることを示す。これを向心力という(円運動は中心に向かいたがって居るのだ!)。更にこの式に於ける微分積分の関係から次の式を得る。
&mimetex(\vec{p}=-\frac{1}{\omega^2}(\frac{d^2}{dt^2}\vec{p}));
これを微分方程式と言う。自然科学の公式は大部分が微分方程式で表すことができる。
また円運動という事は当然&mimetex(|\vec{p}|=r);であるので、加速度の大きさは恆に&mimetex(|\vec{a}|=r\omega^2);である。別に計算すれば&mimetex(|\vec{v}|=r\omega);、それからベクトルpとベクトルvの内積は0であり速度は円の中心を通る線に直交している。
前項は等加速度運動であった。では加速度を変化させるにはどうすればよいか、力を加えたら運動はどのような加速度を得るのだろうか。
「慣性」が成り立つ系をこう呼ぶ。なんのこっちゃ、って訣なので次項で是をみる。その前に用語整理を。
暫くは慣性質量のみを扱う。
以上が成立する系を慣性系と呼ぶのである。一般には「力の無い宇宙空間では当たり前」として知られてる事だね。
同じ力で生まれた加速度だと、重い程動かす早さが遅くなるのは当然ですネ。
以上を、加えた力の合力をベクトルF、速度をベクトルv、加速度をベクトルa、質点の慣性質量をmとすると、以下の式を得る。
&mimetex(p=m\vec{v}); &mimetex(\vec{F}=\gamma^3 m\vec{a}); &mimetex(\gamma=\frac{1}{\sqrt{1-\frac{|\vec{v}|^2}{c^2}}});
p は運動量であり「運動量と力積」を参照。γ は相対性理論による補正であり、光速度cに対して速度vが充分に小さいときは1に近似する。従って次式となる。
c>>vのとき、&mimetex(\vec{F}=m\vec{a});
尚、質点の座標を位置ベクトルpとすると、時刻tでの微分方程式は下記の通り。
&mimetex(\vec{F}=\gamma^3 m\frac{d^2}{dt^2}\vec{p});
質点AとBを考える。AがBをFの大きさの力で圧迫すれば、BはAをFの大きさの力で押し返すということである。「抗力」に詳しい。
&mimetex([N]=[kg][m/s^2]);
力の単位ニュートンは上式で定義される。「1kgの慣性質量を持つ質点を毎秒毎秒1mの加速度で動かせる力」を「1N」とする。これは、そのまま&mimetex(\vec{F}=m\vec{a});に代入した物。
60Nの力で慣性質量60kgの物体を押すと、その刹那、押した方向に毎秒毎秒1mの加速度が加わる、ということである。逆に、ある瞬間、慣性質量60kgの物体が毎秒毎秒5mの加速度を持ったならば、それは加速度の方向に300Nの力が加わっているのである。
ここでは力を加えた時間を全く考慮してないが、力を加える時間が瞬間的な場合、それはどう捉えればよいのだろうか? 加速度で変化する速度はいったいどれくらいの大きさになるのか。その答えは「力積」の項に讓ることにしよう。
数学Ⅲでは函数&mimetex(x=f(t), y=g(t));を与えた時に(x,y)がとる軌跡の道のりLは
&mimetex(L=\int_{a}^{b} \sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}\, dt=\int_{a}^{b} \ sqrt{\left\{f'(t)\right\}^2 + \left\{g'(t)\right\}^2}\, dt);
と与えられるが、教科書の證明を見ても明らかであるように、これは上述の座標を表すベクトルp(x,y)を媒介変数tで微分しその変化量たる所謂「速度」を考え、更にその速度ベクトルの大きさを求めて、最後に媒介変数tで積分する作業に他ならない。
&mimetex(y=f(x));などの時は、t=xとすると&mimetex(\frac{dx}{dt}=1,x=t,y=g(t));であるから、上式を置換積分すればよい。
&mimetex(L=\int_{a}^{b} \sqrt{1+(\frac{dy}{dx})^2}\, dx);
グラマにはあまり必要がない稀ガス。
波動の理解は、最終的にアインシュタインの光粒子性の考え(相対性理論を発表する前に彼はこれを発表した)まで到る物である。エンコード技術には波動を使うことがあるようで、グラマに必要かといえば必要だろう。
電位からコンデンサ、直流に触れる。
電流、磁界から電磁誘導、交流に触れる。
量子力学の成果を高校向けに咀嚼した物。やや物理化学よりだが、光の粒子性、電子の波動性、原子構造・原子核放射(輻射)性崩潰、核エネルギー・素粒子に到る。
問題集をひたすらに説くべし。分からなくなったら、検索して意味を調べ理解を深め、わかるまで繰り返す。物理的な考え方より、厳密な数学としての解法を試みてみるとスッキリすることもある。納得するまで考えよ。
古典力学を解体した理論です。理解には線形代数とかリーマン幾何学の知識が必要なんだぜ。
独物理学者アルバート・アインシュタインによって生み出された
古典(=量子論に非対応)物理論のこと。
それまでのニュートン力学では時間は絶対の尺度であり、遠隔作用は
瞬間的に働くものだと思われていた。
それに対して、光速が普遍の尺度であり、時間系もその観測者の系によって異なる=相対的であることを提唱したのである。
彼はこの理論によって物理学における時間と空間、さらに質量とエネルギーを統合した。