数学 > 解析学(analysis)

解析学

解析学について

新課程に入る前、旧課程の教科書では、「数一・基礎解析・代数幾何・確率統計・微積分」と分かれてあったのですが、現在ではこれを適当に纏めてあります。このうちの基礎解析とは、微分や積分を扱う分野でした。

なぜ微分や積分は解析学と呼称されたのでしょう。この分野では、多く、ニュートンやライプニッツの業績が讃えられます。従ってその解析対象は、まさしく、自然科学を解析するために生まれたのです。現在では函数自体を解析するなんてこともありますが、そもそも解析学とは、変化する量がどのように変化しているのかを考えるためにあるのです。

なおこの微分・積分の発見、どうも時代的必然であったようです。幾らかの発見に概して云えることかもしれないけど、人類が条件を満たしたとでもいいましょうか、ほぼ同時期に違う学者が発見してるんですね。現代数学の系譜であるニュートンやライプニッツに埋もれた、関孝和とかを忘れないであげてほしい。

既存の項目

微分・・・重複。どうしよう。ちなみに積分は無えぞ。

必要な知識

第一に種々の函数の取扱い方。線函数、抛物線函数、橢円函数、双曲線函数、円函数、指数・対数函数、と高校レベルであっても数多い函数を取扱うが、どれひとつ欠けてはならない。

次に極限の性質。&mimetex(\lim_{\theta \to 0 } \frac{sin\theta}{\theta} = 1); とかは、常識であると認識せねばならない。

更にまた、&mimetex(\lim_{\theta \to 0 } \frac{sin2\theta}{\theta} = 2\lim_{2\theta \to 0 } \frac{sin2\theta}{2\theta} = 2); のように変形するといった事も、忘れてはならない。

初等解析 - 微分篇

微分とは読んで字のごとく、細分化する作業。解析学について述べた「変化する量がどのように変化しているのか」ってのがポイント。

微分法とは

抛物線は一様な変化をしないため、よく例題として取り上げられます。ここでも例によって、&mimetex(y=x^2); のグラフPを眺めながら微分法を考えます。

x012345
y01491625
Δy/Δx-13579-

物理を初めて習った時、実験データの解析(移動距離と速度)で図を書かされた事を思い出して、上の増減表を用意してみました。変数 y を変数 x で解析してみましょう。なおΔ(delta) はdifference「差」を意味します。

変数 x が同じ値(ここではΔx = 1)だけ変化した時、変数 y はどのように変化しているでしょうか。それを列挙してみたのが Δy/Δx = Δy の部分です。どうにも等差数列になっていて、どこかしら規則性があるように思えます。

次に変数 x の変化量を Δx と置き、y の 変化量 Δy とその平均変化量を考えます。上の図では、平均変化量を「Δy/Δx」と表記しました。Δx=1 で解析していたので、平均変化量 Δy/Δx は y の変化量 Δy に等しいとしても良かったのですね。

x→x+Δx の時 &mimetex(y+\Delta y=(x+\Delta x)^2); ですから、Δy の値は、&mimetex(\Delta y=(x+\Delta x)^2-x^2= \Delta x(\Delta x + 2x));と与えられます。これは数式を変化させただけですから、自明だと思われます。

次に Δy/Δx を求めてみましょう。明らかに &mimetex(\frac{\Delta y}{\Delta x} = 2x + \Delta x); です。これは何を意味する式なのでしょうか。

もし仮に、Δx が微細であるとき、つまり変数 x の変化量が僅かであるならば、Δx は 0 に近似します。つまり Δy/Δx = 2x という近似式が得られるのです。微分法とは、「ある変数の変化量が微少変化であるとき、その変数で定義される函数の変化量は幾らか」を求めるものなのです。

微分法の利用

連続したグラフ上の二点間を結んだ直線の傾きは、その二点間の平均変化量(Δy/Δx)を表しています。グラフP の場合で、その事実を確認してみて下さい。x が 1から3に変化したとき、平均変化量 4(=9-1/3-1)は、たしかにx=1とx=3の二点間を結んだ直線の傾きとなります。このことはとても重要な事実です。

変化前の点を点S、変化後の点を点Tとしましょう。先程の Δx が微小変化量であるときの仮定は、グラフ上の二点すなはち点Sと点Tが近接することを表します。つまり点Sが点Tに一致すると看做せる事から、「近接二点S-T間の平均変化量(Δy/Δx)は、点S(=点T)における接線の傾きである」と看做すことができます。

譬えば P の場合、Δy/Δx = 2x という近似式が求まりましたが、この式に点S の x 成分の値を代入すると、点Sにおける接線の傾きが求まります。次節からはこの事に関して、より詳細な検討を始めます。また以上の説明はだいたい教科書に載っているような説明の抜萃であって、詳細は、そういう書籍を参考にしてください。

導函数とその定義

合成函数の導函数

逆函数の導函数

種々の導函数

n次方程式

円函数

対数函数・指数函数

高次導函数

導函数の公式

媒介変数と導函数

接線と法線

平均値の定理とロルの定理

函数のグラフ

増減

極大・極小

曲線の凹凸

変曲点

補講

対数微分法

速度と加速度

近似式とニュートン法

凹凸の意味

偏微分

テイラー展開・マクローリン展開

初等解析 - 積分篇


トップ   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS